Welbeck Primary School

Mathematics KS2 Calculation Policy

Reviewed Summer 2023

KEY STAGE 2 WRITTEN CALCULATION METHODS

Addition and Subtraction

Year 3 Objectives

- add and subtract numbers mentally, including:
 - a three-digit number and ones
 - a three-digit number and tens
 - a three-digit number and hundreds
- add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction
- estimate the answer to a calculation and use inverse operations to check answers
- solve problems more complex addition and subtraction.

Year 4 Objectives

- add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction
- estimate and use inverse operations to check answers to a calculation
- solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why.

Year 5 Objectives

- add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction)
- add and subtract numbers mentally with increasingly large numbers
- use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
- solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.

Year 6 Objectives

- use their knowledge of the order of operations to carry out calculations involving the four operations
- solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why

KEY STAGE 2 WRITTEN CALCULATION METHODS

Addition Progression

Multiplication and Division

Year 3

• recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables

- write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods
- solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects.

Year 4

- recall multiplication and division facts for multiplication tables up to 12 × 12
- use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1; dividing by 1; multiplying together three numbers
- recognise and use factor pairs and commutativity in mental calculations
- multiply two-digit and three-digit numbers by a one-digit number using formal written layout
- solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects.

Year 5

- identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers
- know and use the vocabulary of prime numbers, prime factors and composite (non- prime) numbers
- establish whether a number up to 100 is prime and recall prime numbers up to 19
- multiply numbers up to 4 digits by a one- or two-digit number using a formal written

method, including long multiplication for two-digit numbers

- multiply and divide numbers mentally drawing upon known facts
- divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context
- multiply and divide whole numbers and those involving decimals by 10, 100 and 1000

Year 6

- multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication
- divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
- divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context
- perform mental calculations, including with mixed operations and large numbers
- identify common factors, common multiples and prime numbers
- use their knowledge of the order of operations to carry out calculations involving the four operations
- solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why

KEY STAGE 2 WRITTEN CALCULATION METHODS

Multiplication Progression

 $\frac{\text{Multiplication (Y2/Y3)}}{\text{Partitioning using the grid method}}$ $32 \ge 3 = 96$

Short multiplication

Long Multiplication

x42

Division Progression

25% of 88 = 22	20% of 3,000 =	28% x 650 =		
Strategy: recognise that 25% is the same as $\frac{1}{4}$	Strategy: use understanding of calculating 10% and that 20% is two lots of 10%	Strategy: partition 28% into 10%, 10% and 8%.		
To find a $\frac{1}{4} = \frac{1}{2}$ and $\frac{1}{2}$ again	(doubling)	10% of 650 = 650 ÷ 10 = 65		
$\frac{1}{2}$ of 88 = 44, $\frac{1}{2}$ of 44 = 22	10% of 3000 = 300	10% of 650 = 650 ÷ 10 = 65		
Answer: 22	20% of 3000 = 300 x 2 = 600	8%: 1% of 650 = 650 ÷ 100 = 6.5		
Answer: 22	Answer: 600	8% = 6.5 x 8 = 52		
		Answer: 65 + 65 + 52 = 182		
45% of 460 =	51% of 900 =	17% x £26 =		
Strategy: use understanding that 45% can be partitioned into 4 lots of 10%, and 5%.	Strategy: recognise that 50% is the same as $\frac{1}{2}$	Strategy: partition 17% into 10% and 7%. Decimalise £26 to £26.00		
10% of 460 = 460 ÷ 10 = 46	Use understanding of fluency that ½ of 90 =	10% of £26 = 2 6. 0 0 ÷ 10 = 2.6		
40% = 46 x 4 = 184	45, so ½ of 90 <u>0</u> = 45 <u>0</u>	AA 7%: 1% of £26.00 = 2 6. 0 0 ÷ 100 = 0.26		
	1/2 of 900 = 450			
5% = ½ of 10% = ½ of 46 = 23	1% = 900 ÷ 100 = 9	7% = 0.26 x 7 = 1.82		
Answer: 184 + 23 = 207		Answer: 2.6 + 1.82 = 4.42		
	Answer: 450 + 9 = 459			

<u>KEY STAGE 2</u> WRITTEN CALCULATION METHODS: FRACTIONS

Addition/Subtraction

TTINGHAM

$$\frac{1}{5} + \frac{3}{4} =$$
Strategy: identify the LCM (lowest common multiple). LCM of 5 and 4 is 20. Convert.

$$\frac{1}{5} + \frac{3}{4} =$$
Strategy: identify the LCM (lowest common multiple). LCM of 5 and 4 is 20. Convert.

$$\frac{1}{5} + \frac{2}{10} + \frac{1}{5} + \frac{2}{10} + \frac{1}{5} + \frac{1}{20} + \frac{1}{5} + \frac{1}{20} + \frac{1}{20} + \frac{1}{20} = \frac{19}{20}$$
Next step: iden multiple). LCM

$$\frac{4}{20} + \frac{15}{20} = \frac{19}{20}$$
Next step: add

$$\frac{12}{10} + \frac{21}{10}$$
Next step: add

$$\frac{12}{10} + \frac{21}{10}$$
Answer: $\frac{3}{10}$

Multiplication/Division

 $\frac{2}{3} \div 3 =$ Strategy: convert the whole number into a fraction ('Top' it) $\frac{2}{3} \div \frac{3}{1}$ Next step: invert the divisor ('Flip' it) $\frac{2}{3} \div \frac{1}{3}$ Next step: change \div to x $\frac{12}{3} \times \frac{1}{3} = \frac{2}{9}$ Answer: $\frac{2}{9}$ $1\frac{1}{5} + 2\frac{1}{10} =$ Strategy: convert both mixed numbers into mproper fractions $+\frac{1}{1}\frac{1}{5} + \frac{2}{1}\frac{1}{10} = \frac{6}{5} + \frac{21}{10}$ Next step: identify the LCM (lowest common multiple). LCM of 5 and 10 is 10. Convert. $\frac{x^2}{55} + \frac{12}{10}$ Next step: add the two improper fractions $\frac{12}{10} + \frac{21}{10} = \frac{33}{10}$ Answer: $3\frac{3}{10}$ given as a mixed number

 $2\frac{2}{5} \times 3 =$ Strategy: convert the mixed number into an improper fraction and the whole number 3 into a fraction $2\frac{2}{5} = \frac{12}{5} \quad 3 = \frac{3}{1}$ Next step: multiply $12\frac{2}{5} \times \frac{3}{1} = \frac{36}{5}$ Answer: $7\frac{1}{5}$ given as a mixed number

<u>KEY STAGE 2</u> WRITTEN CALCULATION METHODS: FRACTIONS

Fraction of an amount

Fraction of an amount

2/3 of 3693 =

Strategy: divide the whole number by the denominator ('bottom') to calculate 1/3. Use the bus-stop method.

1231 33693

Next step: then multiply this new number by the numerator ('top) to calculate 2/3

 $\begin{array}{r}
1 2 3 1 \\
x 2 \\
\hline
2 4 6 2
\end{array}$

Answer: 2462

 $\frac{5}{6}$ x 540 =

Strategy: divide the whole number by the denominator ('bottom') to calculate 1/6. Use fluency: if $54 \div 6 = 9$, then

540 ÷ 6 = 90

Next step: then multiply this new number by the numerator ('top) to calculate 5/6

90 x 5 = 450

Fluency links: 9 x 5 = 45, so 9<u>0</u> x 5 = 45<u>0</u>

Fraction of an amount

1⁄4 of 1000 =

Strategy: recognise that to find a $\frac{1}{4} = \frac{1}{2}$ and $\frac{1}{2}$ again

1/2 of 1000 = 500, 1/2 of 500 is 250.

Fluency links: ½ of 50 = 25, so ½ of 50<u>0</u> = 25<u>0</u>

<u>KEY STAGE 2</u> WRITTEN CALCULATION METHODS: DECIMALS

Multiplying/Dividing decimals

3.9 has one decimal place so answer will have one decimal place. *Answer:* 117.0

Multiplying/Dividing decimals				
73.8 ÷ 6 =				
Strategy: use bus stop division method.				
$\begin{array}{c} \underline{1 \ 2} \ . \ 3 \\ 6 \overline{7 \ 3} \ . \ 8 \end{array}$				
Answer: 12.3				

KEY STAGE 2

Multiplying/Dividing decimals $70 \div$ = 3.5Strategy: identify inverse method. $70 \div 3.5 =$ Next step: multiply both numbers by 10so that both are whole numbers $700 \div 35 =$ 02035700Answer: 20

WRITTEN CALCULATION METHODS: DECIMALS

Multiplying/Dividing by multiples of 10, 100, 1000

Multi	ples	of	10/1	00/100	00

0.9 ÷ 1 0 0 =

Strategy: underline and count the zeros (**x2**):

<u>0.9 ÷</u> 1<u>00</u> =

Next step: Add in place holders $\underline{to 0}$.

<u>0 0</u> 0.<u>9 ÷</u>100=

Next step: divide by 100 by moving the decimal point **2** places to the left

 $0 \underbrace{0}_{0} \underbrace{9 \div}_{1 0 0} = 0.009$

Answer: 0.009

Multiples of 10/100/1000

Strategy: underline and count the zeros (**x1**):

<u>5.</u>014 × 1<u>0</u> =

 $5.014 \times 10 =$

Next step: move the decimal place **one** place to the right using arrows

5 . 0 1 4 = 50.14

Answer: 50.14

34.8 × 1,000 = Strategy: underline and count the zeros (x3):

Multiples of 10/100/1000

<u>34</u>.<u>8×</u>1<u>0</u>0_=

Next step: Add in place holders

<u>34</u>.<u>80</u>0

Next step: move the decimal point **three** place to the right using arrows

3 4 . 8 0 0 = 3480.0

Answer: 3480.0

0.9 x 200 Strategy: partition 200 into 100 and 100

Multiples of 10/100/1000

0.9 x 100

0.9 x 100

Next step: move decimal point 2 decimal places to the right. Use placeholders

 $0.9 \times 100 = 0$ 9 0 0

 $0.9 \times 100 = 9 0$

Answer: 90 + 90 = 180

Multiples of 10/100/1000

343.1 ÷ 1 000 =

Strategy: underline and count the zeros (x3):

343.1 ÷ 1 <u>0 0 0</u> =

Using arrows, move the decimal point **3** places to the left:

AAA 3 4 <u>3.</u> 1 ÷ <u>1 0</u> 0 0

= 0.3 4 3

Answer: 0.343