KEY STAGE ONE CALCULATION METHODS

Addition/Subtraction

Year 1 Objectives:

- Read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) sign
- Represent and use number bonds and related subtraction facts within 20
- Add and subtract one-digit and two-digit numbers to 20, including zero
- Solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as 7 = ? - 9

Year 2 Objectives:

- Applying their increasing knowledge of mental and written methods
- Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100
- Adding three one-digit numbers
- Show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another
- Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing problems

Addition Methods (in order of progression)

1. Using objects

3. Using number lines (numbered)

4. Using number lines (blank)

1-digit + 1-digit/ 2-digit + 1-digit

5. Using number lines (blank)

2-digit + 2-digit

Partition the smallest number: 23 + 12 = 23 + 10 + 2

2	5		8	4
1	3		3	2
3	8	1	1	6

	2	8
	1	4
	4	2
-	11	

crossing 100.

carrying a 10

Subtraction Methods (in order of progression)

1. Using objects

Physically take away/cover 4 cubes. How many are left?

2. Using pictorial representations

Using pictures / symbols
(subtract by crossing out)
Sam spent 4p. What was his change from 10p?

3. Using number lines (numbered)

(Counting back - for experience and conceptual understanding)

Children to develop understanding to decide the most appropriate strategy

Subtracting a small number - count back

Subtracting a larger number - count on

4. Using number lines (blank)

2-digit - 2-digit (counting on)

$$50 - 28 = 22$$

$$73 - 36 = 37$$

5. Column Subtraction

Use place value counters/ tens and ones to secure concrete/ conceptual understanding prior to teaching formal written method

Practical using ten	s and ones
---------------------	------------

T	0
3	2
1	1
2	1

-	78	13
A no	4	6
	3	7

EXCHANGING a 10

Missing Number Calculations

Year 1

Experience of missing number problems and moving the = sign

$$\Box = 3 + 4$$
 $7 - 3 = \Box$

$$\Box = 7 - 3$$

$$7 = \square + 4$$
 $7 - \square = 4$

$$\Box$$
 + 4 = 7

$$7 = 3 + \square$$
 $\square - 3 = 4$

$$\Box$$
 + ∇ = 7

$$\Box - \nabla = 4$$

Year 2

Continue using a range of missing number problems using appropriate, larger numbers and more complex equations

$$14 + 5 = 10 + \square$$
 $31 - \square = 28$

Inverse Operations/ Fact Families

Multiplication/Division

Year 1 Objectives:

• Solve one-step problems involving multiplication and division

Year 2 Objectives:

- Recall and use multiplication and division facts for the 2, 5 and 10 multiplication tables, including recognising odd and even numbers
- Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (x), division (÷) and equals (=) signs
- Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot
- Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods and multiplication and division facts, including problems in contexts.

Multiplication Methods (in order of progression)

1. Add equal groups

(Understand multiplication as repeated addition)

- Use cubes to make equal groups
- Use pictorial representations

There are groups.

Each group has ladybirds

There are ladybirds altogether.

$$2 + 2 + 2 + 2 = 8$$

4 lots of/groups of $2 = 8$
 $4 \times 2 = 8$

2. Using arrays

$$2 + 2 + 2 + 2 = 8$$

4 lots of/groups of $2 = 8$
 $4 \times 2 = 8$

$$4 + 4 = 8$$

2 lots of/groups of $4 = 8$
 $2 \times 4 = 8$

3 x 4 = 12 4 x 3 = 12

3. Counting in multiples to solve multiplication calculations

 $6 \times 5 = 30$ (put 6 fingers up, count in 5s) Develop recall speed

4. Grid Method Multiplication (G+T children)

2-digit x 1-digit

X	10	5
2	20	10

Division Methods (in order of progression)

Children must explicitly learn division as sharing and division as grouping

Sharing

1. Using cubes

$$10 \div 2 = 5$$

10 cubes **shared** into two equal groups

2. Drawing pictorial representations

$$10 \div 2 = 5$$

Grouping

1. Using cubes

$$10 \div 2 = 5$$

10 cubes **divided** into **groups** of 2 How many **groups of 2** are there in 10?

2. Drawing pictorial representations

$$10 \div 2 = 5$$

2

2

2

2

10 divided into groups of 2

How many groups of 2 are there in 10?

3. Counting in multiples to solve division calculations

Grouping progresses to solving calculations mentally by counting in multiples.

 $30 \div 5 = 6$ (count in 5s using fingers, how many lots of 5 are there? 6!) Develop recall speed

Missing Number Calculations

Year 2

7 x 2 =
$$\Box$$

$$\square$$
 x ∇ = 14

$$\Box = 2 \times 7$$

$$14 = \square \times 7$$

$$\Box$$
 = 6 ÷ 2

Inverse Operations/ Fact Families

$$\frac{2}{10} \times \frac{5}{10} = 10$$

Fractions of a number

Year 1 Objectives:

- Recognise, find and name a half as one of two equal parts of a quantity
- Recognise, find and name a quarter as one of four equal parts of a quantity

Year 2.Objectives:

• Recognise, find, name and write fractions 1/3, ¼, 2/4 and ¾ of a set of objects or quantity

Sharing

(link to division – sharing)

 $\frac{1}{2}$ of 8 = 4

First— Use cubes to share (see division methods)

Then— Draw pictorial representations

1/4

1/4

1/4

$$\frac{1}{4}$$
 of $8 = 2$

1/4

$$\frac{3}{4}$$
 of $8 = 6$

1/4

Using a bar model

(link to division – grouping)

Steps to Success:

- Use your 2 times table to find ½ (÷ by 2)
- Show your halves using a bar model
- Circle ½

1/2 of 8 is

Steps to Success:

- Use your 3 times table to find 1/3 (÷ by 3)
- Show your thirds using a bar model
- · Circle 1/3

1/3 of 12 is

Steps to Success:

- Use your 4 times table to find ¼ (÷ by 4)
- Show your quarters using a bar model
- Circle 1/4

1/4 of 8 is

Steps to Success:

- Use your 4 times table to find ¼ (÷ by 4)
- Show your quarters using a bar model
- Circle ¾ and calculate

34	of	8	;	6
•	2	(2)	(2)	2

NOTE:

Remember $\frac{1}{4}$ is 'halve it, halve it again'. If children see $\frac{2}{4}$ – they should find $\frac{1}{2}$